Американские микробиологи выяснили, что бактерии могут использовать биологическое оружие против своих сородичей. Некоторые из них содержат в своем геноме ДНК бактериофагов - вирусов, убивающих микроорганизмы. Когда такие "камикадзе" считают, что вокруг стало несколько тесновато, они напускают этих бактериофагов на своих противников и те гибнут.
Обычно когда говорят о биологическом оружии, то в первую очередь подразумевают применение против врага болезнетворных бактерий. Правда, болезни вызывают не только они — как мы знаем, есть еще грибки и вирусы. Однако первые достаточно капризны и не в состоянии быстро вызвать целую эпидемию (хотя для порчи продуктов на складах их, конечно же, использовать можно). А что касается вирусов, то их достаточно сложно культивировать, поскольку они могут размножаться только в живых клетках. Поэтому-то в основном биологическое оружие делают из культур бактерий, вызывающих эпидемиологические заболевания.
Но вот что интересно — оказывается, бактерии тоже имеют свое собственное биологическое оружие. Причем то, применять которое люди пока что как следует не могут, а именно — вирусы. Эти микроорганизмы могут "натравливать" бактериофагов (вирусы, поражающие только бактерии) на своих конкурентов. Причем каждая бактерия носит это оружие в себе до того момента, когда выпускает на врага.
Недавно ученые из Юго-Западного медицинского центра Техасского университета в Далласе (США), работая с условно-патогенной бактерией Enterococcus faecalis, которая составляет 1 процент от общего числа всех микроорганизмов нашей кишечной микрофлоры, заметили, что ее штаммы могут конкурировать друг с другом. При этом чаще всего побеждал штамм V583, представители которого полностью уничтожали своих конкурентов. И, что самое удивительное, те не могли противостоять этому неведомому оружию.
Биологам показалось это странным — известно, что Enterococcus faecalis довольно устойчива ко многим антибиотикам. Однако здесь все противники штамма V583 оказывались бессильными. Возможно, предположили исследователи, этот "агрессор" использует не бактериальный антибиотик, а что-то другое. Чтобы разобраться в ситуации, ученые решили изучить геном представителей всех штаммов.
В результате выяснилось, что, во-первых, их ДНК достаточно сильно отличается, а, во-вторых, — что в геноме штамма V583 скрывается так называемый профаг. Так называют ДНК бактериофага, внедрившуюся в наследственную молекулу бактерии. И происходит это весьма интересным способом. Чаще всего бактериофаги, заражая клетку, прикрепляются к специфическим рецепторам на ее поверхности, затем "впрыскивают" свою ДНК внутрь микроорганизма и она сразу же внедряется в геном хозяина. Инъекция генома вируса вызывает полную перестройку метаболизма клетки — прекращается синтез бактериальной ДНК, РНК и белков.
А вот наследственная молекула бактериофага времени зря не теряет — она начинает деятельность по самокопированию и синтезу нужных вирусу белков, используя при этом ресурсы клетки. Как только все "запчасти" оказываются готовыми, происходит сборка молодых бактериофагов. И в конце концов они покидают клетку хозяина, разрывая ее при этом.
Но иногда все происходит несколько иначе — молекула ДНК бактериофага, внедрившись в геном бактерии, не проявляет никакой активности. Вот тогда-то и образуется профаг. Клетка хозяина вообще не замечает его присутствия — она ест, растет и размножается, передавая данную "бомбу" своим потомкам. Кстати, "бомбой" эту чужеродную ДНК микробиологи называют не зря — она может "проснуться" в любой момент и начать работу по созданию новых фагов. Однако пока ДНК спит, то никакой опасности для клетки в общем-то нет.
Правда, иногда ради безопасности бактерии все же вырезают ДНК бактериофага из своего генома и помещают в специальный пузырек — плазмиду. Потом эту плазмиду можно передать какому-нибудь сородичу (бактерии часто обмениваются ими) и, соответственно, зажить спокойно — пусть он сам и разбирается с опасным "подарком". В то же время плазмиды с профагами также часто передаются по наследству потомкам.
Так вот, изучив ДНК штамма V583, ученые обнаружили там даже не одного, а двух профагов. Одна ДНК вируса позволяет синтезировать его структурные элементы, а другая — белки проникновения, позволяющие заразить клетку противника. Удивительно, что когда оба профага активизируются, то в итоге получается гибридный бактериофаг. И именно он и убивает всех конкурентов — ведь у бактерий до сих пор не выработались эффективные механизмы защиты от этих вирусов (кроме вышеописанного "приручения", то есть превращения в профаг).
Ученые пока не знают, каким образом происходит активация спящих профагов — возможно, у бактерии есть какие-то специальные белки, которые могут "пробудить" ДНК вируса. Ясно пока лишь одно — вырвавшиеся на волю бактериофаги, попадая в клетки других штаммов, остаются активными и разрушают их. А вот проникнув внутрь представителей штамма V583, они снова превращаются в профагов. Так что, вероятно, эти микроорганизмы имеют еще и специальные средства защиты, природу которых также предстоит выяснить.
Конечно же, клетки из штамма V583 после "пробуждения" профагов погибают — образовавшиеся вирусы, как и положено, разрывают их при выходе. Однако их жертва не напрасна — конкуренты-то оказываются уничтоженными. Такое поведение похоже на ситуацию, когда солдат бросается под танк со связкой гранат — его гибель при этом спасает войсковую часть, которую атакуют. Но чем именно эти микроорганизмы-альтруисты отличаются от своих сородичей, пока что не ясно. Биологи считают, что ответ может дать более тщательное изучение ДНК изобретательного штамма.
Судя по всему, способность содержать в своем геноме профага выработалась у этой бактерии в процессе эволюции. Возможно, в далеком прошлом ослабленные особи вирусов, которые не могли полностью захватить контроль над клеткой, оставались в геноме бактерии, а те, в свою очередь, привыкли к этому "имплантанту" и со временем научились его использовать. Это-то и послужило началом такого интересного и необычного боевого союза.
Кстати, не исключено, что такое использование фагов не является редкостью среди сложных бактериальных сообществ. Известно, что наши полезные кишечные сожители помогают людям бороться с патогенными бактериями. Вполне возможно, что не последнюю роль в этом играет именно такое биологическое оружие…
Источник: pravda.ru
24-10-2010 Просмотров:11350 Новости Ботаники Антоненко Андрей
Новые виды растений биологи находят частенько, но открытие неизвестного рода — событие редкое. Удача улыбнулась Кармен Уллоа Уллоа (Carmen Ulloa Ulloa) из ботанического сада Миссури (Missouri Botanical Garden) и её...
05-04-2014 Просмотров:8025 Новости Астрономии Антоненко Андрей
О том, что внутри Энцелада находится вода, учёные заговорили после 2005 года, когда тот же «Кассини» впервые запечатлел следы водяного пара и льда, выплёвываемого из отверстий близ южного полюса этой...
10-05-2011 Просмотров:11137 Новости Зоологии Антоненко Андрей
Насекомые утратили чувствительность к «генетическим тормозам» и превратились в монстров: вместо крыльев у древесных жуков выросли рога и горбы. Umbelligerus peruviensisЭнтомологи и генетики из научных центров США и Франции под...
26-10-2015 Просмотров:7187 Новости Зоологии Антоненко Андрей
Ученые выявили новый вид гигантских черепах, обитающих на Галапагосских островах. Их численность составляет всего 250 особей, поэтому вид нуждается в особой охране. Chelonoidis donfaustoiОб этом говорится в статье, опубликованной в журнале...
21-09-2010 Просмотров:11542 Новости Палеонтологии Антоненко Андрей
Теропод Concavenator corcovatus может стать одним из ключей к происхождению птиц, вернее, одной из самых ярких их особенностей — перьев. Так считают Франциско Ортега (Francisco Ortega) из испанского...
Генетические исследования, проведенные в Медицинском центре Чикагского университета, показали, что HOX-гены, отвечающие за формирование конечностей, отвечают у рыб за формирование плавников. Подробности исследования опубликованы в журнале Nature. КонечностиУченые под руководством Нила…
Уникальная пустыня Намиб, расположившаяся прямо на берегу Атлантического океана, сформировалась благодаря пескам реки Оранжевая. Она так и росла с юга на север вдоль побережья. Пустыню Намиб породили река и течение…
Учёные проанализировали молекулярно-генетические отличия мозга человека от мозга обезьян. Хотя у шимпанзе мозг в два раза меньше, чем у человека, учёные полагают, что главные отличия нашего мозга от обезьяньего — качественные,…
На дне впадин в окрестностях Багамских островов, кои принято называть голубыми дырами, обнаружена богатая микробная жизнь. Сбор планктона и бактериальных матов (фото Tamara Thomsen)Многие из этих организмов неизвестны науке. По-видимому, они…
В 2011 году исследователи из Швейцарского орнитологического института прикрепили к шести белобрюхим стрижам датчики, которые записывали все перемещения птиц. Белобрюхие стрижи — небольшие птички весом чуть больше 100 г — проводят лето…
Ученые из МГУ имени М.В. Ломоносова и Университета Иллинойса (США) изучили способы упаковки ДНК в клеточном ядре и их изменение в процессе ее репликативного синтеза. Статья опубликована в журнале Current Biology. Сравнение обычной флуоресцентной микроскопии реплицирующегося хроматина и микроскопии с…
Гигантские рептилии могут вернуться на Землю, если прогнозы ученых относительно глобального потепления станут реальностью. Именно температура окружающей среды, согласно новой гипотезе, приводит к появлению аномально крупных пресмыкающихся. Глобальное потепление может привести…
Где-то 600–700 млн лет тому назад на Земле приключилось нечто трудно представимое: она замёрзла. Суша, находившаяся в то время целиком в приэкваториальных и тропических областях, несёт на себе чёткие отпечатки…
Оглавление 1. Введение 2. Появление и эволюция растений 3. Разнообразие растений 4. Строение растений 5. Размножение растений 6. Питание растений 3. Разнообразие растений Предполагают, что в целом на Земле существует более 350 тыс. видов растений. К настоящему времени учёным удалось описать около 500 000 видов…